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ON THE EXISTENCE OF AN INTEGRAL INVARIANT OF A SMOOTH DYNAMIC SYSTEM* 

V.V. KOZLOV 

The existence of an integral invariant with a smooth density for a dynamic 
system in a cylindrical phase space is considered. The well-known Krylov- 
Bogolyubov theorem guarantees the existence of an invariant measure for 
any system in a compact space (for a discussion of these topics see /l, 2/). 
But this measure is often concentrated in invariant sets of small di- 
mensionality and in general is not an integral invariant with a summable 
density. For useful applications of ergodlc theory, and in the theory 
of the Euler-Jacobi integrating factor, an invariant measure in the form 
of an integral invariant with smooth density is useful. Effective 
criteria for the existence of such measures in smooth dynamic systems 
are described. The general results are illustrated by examples from non- 
holonomic mechanics. 

1. Formulation of the problem. Consider the cylindrical phase space M" = Rk X T"mK 
with coordinates x1, . . ..z., of which k are linear and n-k angular. Let v be a smooth 
vector field in w; thecorresponding differential equation is 

x' = u (z) (1.1) 

We consider the existence for system (1.1) of the integral invariant 

mes(D)== i f (x)d”x (1.2) 

with smooth positive density f: M”- R. 
The criterion for the existence of integral invariant (1.2) is the Liouville equation 

div (fv) = 0, which, since f is positive, can be rewritten as 

w' = - div ~3, w = In f (1.3) 

Clearly, w is a smooth function in M". 
By the theorem on the rectification of trajectories, in a small neighbourhood of a non- 

singular point of system (1.2) there is an entire family of integral invariants. Thus it is 
worth considering the integral invariant problem either in the neighbourhood of a position 
of equilibrium, or in a sufficiently large domain of the phase space where the trajectories 
are reversible. 

We know that the equation of motion of holonomic mechanical systems always have a natural 
invariant measure (the shape of the volume in the space of cotangent fiberings of the space of 
positions). It was pointed out in /3/ that non-holonomic systems may in general not have an 
invariant measure with an integrable density. 

We will mention two examples of non-holonomic systems which will be used to illustrate 
our results. 

lo. The problem of the rolling of a heavy rigid body over an absolutely rough horizontal 
plane. Chaplygin found the invariant measure in the case when the surface is bounded by a 
sphere and the centre of mass of the body is the same as its geometric centre /4/. An in- 
variant measure can also be shown to exist when the rigid body has an axis of symmetry (either 
geometric or dynamic). 

*Prikl.Matem.Mekhan.,51,4,538-545,1987 
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2O. suslov's problem on the inertial rotation of a rigid body about a fixed point with 
non-holonomic coupling: the projections of the angular velocity onto a direction fixed in the 
body vanish /5/. Let Os,z,z, be a moving orthogonal system of axes, and p,q,r the projections 
of the angular velocity onto these axes: the matrix of inertia of the body is 

A D E 

I I/ 
DBF (1.4) 
EF C 

a. B7 Y are the direction cosines of the fixed vertical relative to the zl,zI.zs axes. The 
equation of the non-holonomic coupling is taken to be r= 0. By a rotation of the 2, and z, axes 
we can arrange to satisfy the equation D =O. In the variables p, qva,p,Y, the equations of 
rotation of the body are /5/ 

,Ap’ = Epq + Fq¶, Bq’ = -Fpq - EP” (1.5) 
cc’ = --Qy, fi’ = py, y’ = pa - PB 

It was shown in /3/ that these equations have an integral invariant if and only if E= 
F = 0. In this case the z8 axis is proper for the matrix of intertia (1.4). 

2. Condition of existence for the integral invariant. 

Theorem 1. Let x:R+M* be the solution of system (1.1) with a compact closure of its 
trajectory. If system (1.1) has an integral invariant, there exists 

Proof. Let L(~)E Do where Do is a compact subdomain in M". In accordance with (1.3) 

II 
liml- div&=lim w(z(o))~41(z(S)) =o 

s a-00 * o WoD 

since the continuous function w is lower and upper bounded in the set Do. 

Corollary. Let x = 0 be an equilibrium solution of the non-linear system 5' =Xx$ 
. . . . If tr x # 0, this system has no integral invariant with a smooth density in the neighbour- 
hood. of the point x = 0. 

For, in this case (div v)~=,, = tr X. It remains to use (2.1) for the equilibrium solution 
x (t) z 0. 

It is interesting that the condition trx = 0 implies the preservation of the standard 
form of the volume in R" by a phase flow of the linear system x'= Xx. Hence, if a linear 
system with constant coefficients has at least one integral invariant, it must have the 
standard invariant measure. 

In the non-autonomous case the Liouville equation is at/at+ div(fv)= 0. If f>O, then, 
putting w=lnf, we again arrive at Eq.tl.3). We know that solutions f&t) of the non-auto- 
nomous Liouville equation always exist. They are uniquely defined e.g., by the values of the 
density f at t= 0. Consequently, in this situation it is natural to consider the existence 
of integral invariants of a special kind. For instance, let z'= X(t)z+... be a non-linear 
o-periodic system with the trivial solution s(t) = 0. It can be shown that the necessary 
condition for an integral invariant with an o-periodic density to exist is 

T 
tr X (') dt = 0 

0 

We know that the exponent on the right-hand side of this equation is equal to the product 
of the multipliers of the linearized system. 

For the equilibrium positions of non-holonomic systems, the sum of the characteristic 
numbers is equal to zero. The necessary condition for an integral invariant to exist is thus 
satisfied. This is not the case, however, for stationary motions (relative equilibria). 

Let us give some examples. 
lo. When a heavy rigid body rolls on a rough horizontal plane there are stationary 

motions when one of the central axes of inertia is vertical, and the body rotates with 
constant angular velocity while touching the plane at the same point 0. We can conclude from 
the form of the characteristic equation /6/ that the sum of the characteristic numbers is 
proportional (with a non-zero coefficient) to sinacosa, where d is the angle between the 
principal directions of the body surface at the point 0 and the other two horizontal central 
axes of inertia. Thus, if these axes do not coincide, the equations of rolling do not have 
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an integral invariant. Non-coincidence of the dynamic and geometric axes is a typical feature 
of so-called Celtic stones, see /6/. 

2O. The equations of motion in Suslov's problem (1.5) have a stationary solution, for 
which 

Here, k and 1 are constants such that (k1)z(E2+Fa)= 1 The 
the obvious condition E*+ Fp# 0. 

The matrix trace of the linearized system is k(E*/A +P/B). 
Theorem 1, the integral invariant for system (1.5) exists only 
This conclusion is reached in /3/ from geometric arguments. 

3. Integral invariant in the neighbourhood of an 
Consider the non-linear system 

(2 2) 

solution (2.2) exists only under 

Hence, by the corollary to 
under the condition 8 c p _= ,, 

equilibrium position. 

(3.1) 

The question of the existence of an integral invariant reduces to the question of the 
solvability of (1.3). We put 

u_l = zu,, + (a,~)+. .; w,,~ R, UE R" 

We will calculate the divergence of the right-hand side of system (3.1): 

- divu=tr A + (b, 5) + . . 

In the present case Eq.(l.3) has the explicit form 

(a, A I) + . . . = - tr A - (b, L) - . . . (3.2) 

Hence we obtain the series of equations: trA= 0, ATa =b,... The first was obtained above 
in Sect.2. We put X=AT,Y=IIX,bll. Th e matrix Y has dimensions n X (n + 1). 

Theorem 2. If rank X < rank Y, system (3.1) does not have an integral invariant in the 
neighbourhood of the point .x = 0. 

For, we always have rank X Q rank Y and the equation is the condition for the linear 
system ATa = b to be solvable with respect to a. This condition certainly holds if A is 
a non-degenerate matrix. 

Notice that the constantw,in the Maclaurin expansion of w can be regarded as arbitrary. 
This corresponds to the fact that the density of the invariant measure is defined apart from 
a positive constant factor. The condition for Eq.(3.2) to be solvable to a first approxi- 
mation is that the ranks of X and Y should be equal. If this is so, we can find (possibly 
non-uniquely) the linear terms in x in the expansion of w. On equating coefficients of the 
terms of second degree in Eq.(3.2), we obtain a linear system of algebraic equations for the 
quadratic terms in the expansion of w. The components of the vector a appear linearly in 
this system. Its solvability condition is the well-known condition for the Kronecker-Capelli 
ranks to be equal. Similarly, when analysing the solvability of Eq.(3.2) in the higher 
approximations, conditions arise on the ranks of matrices whose elements are expressible in 
terms of the coefficients of the right-hand sides of system (3.1). 

As an application of Theorem 2, we again consider system (1.5) of Suslov's problem. 
Since no forces act on the rigid body , any position of it is an equilibrium position. Let 

a,. $09 Yo be the direction cosines in the equilibrium state. The divergence of the vector 
field (1.5) is equal to qE/A -pF/B, so that b = (-F/B, E/A, 0, 0, O)?. We write the non-trivial 
non-zero part of the matrix Y as 

The vertical line separates 
If 

then rank Y = 2. LetE'+F'#O 
that (3.3) holds. In this case, 
variant. 

0 Yo II--yo 0 --:I-FE:BAH 
the elements of the matrix X. Let y0 = 0. Then rank X = 1. 

E&/A - Fa,lB # 0 s(3.3) 
We can then choose a0 and ~o(aCtBo'= 1) in such a way 

as we mentioned in Sect.1, the equations have no integral in- 

4. The averaging principle. We consider the systems of normal form commonly en- 
countered in applications: 

Ik'=eFk((I,cp)+ . . . . cps’ = 0, (I) + eG, (I, cp) + . . f (4.1) 
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Here, Z = (I,, . . ., I,) are Cartesian coordinates in Bm, cp = (ml, . . ..cp.) is the set of 
angular coordinates in the n-dimensional torus T", E is a small parameter. The functions 
F,, G,, . . . are assumed to be 2n-periodic in the angular variables ~J~,.-..(P,,. With e =0 
system (4.1) obviously has a family of invariant measures, whose densities are arbitrary 
smooth positive functions of the variables Il,...,Im. 

We examine the case when system (4.1) has an integral invariant with density in the form 
of the series 

fo V, (P) + af1 (1, 9) + . - . +L2) 

with coefficients &(a = 0,1 ,..+) which are smooth and single-valued in R* x T", Clearly, 

fo > 0. 
The undisturbed system (4.1) is easily integrated; the variables I, which are first 

integrals, number the invariant toruses, filled by conditionally periodic motions with 
frequencies Ok,..., 0,. The invariant torus Z = I0 is called non-resonant if (w (Za),k)+ 0 
for all integer-valued vectors k +O. The phase trajectories everywhere densely fill the 
non-resonant toruses. We call the undisturbed system non-degenerate if the non-resonant 
toruses everywhere densely fill the phase space R" X T". 

Theorem 3. Assume that the undisturbed system is non-degenerate and that Eqs.(4.1) have 
an integral invariant with density (4.2). Then the averaged system 

Jn = eFk (J), k = 1, . . .,m 

has an integral invariant with density To. 

(4.3) 

The bar denotes as usual the result of applying the averaging operator with respect to 
the angular variables cp. Passage from the complete system (4.1) to the averaged system (4.3) 
is by the standard device of perturbation theory. we note a corollary of Theorem 3: if k = 1 
and the function Fhas an isolated zero, then the complete system (4.1) has no integral 
invariant with density in the form of series (4.2). 

Proof of Theorem 3. Since fO>O, the function w = lnf can likewise be written in the 
neighbourhood of every invariant torus of the undisturbed system with small values of e as 
a series in powers of 8: w = w,(Z,cp)-+- ew,(Z,(p)+ . . . . In the present problem Eq.tl.3) has 
the form 

Equating coefficients of like Rowers of e, we obtain a chain of equations for finding 
successively wg,wI,...: 

It follows from (4.4) that w0 is the integral of the undisturbed system. Since this 
system is non-degenerate, w 0 does not depend on the angular variables (cf. /7/, Chapter 5). 
On averaging (4.5) over 9, we arrive at the equation 

&7k=- c aPk 

k 
ar, 

Consequently, f. = expw,>O is likewise independent of <p and is the density of the 
invariant measure of the averaged system. 

Theorem 3 can be extended to the case of the systems considered in /8/: with e=O the 
phase space is fibered into integral manifolds. The non-degeneracy of the undisturbed system 
means that the integral manifolds in which the dynamic system is ergodic are everywhere dense. 

5. Integral invariant Of Systems Of nOrIM fO?Zlil. We indicate below more exact 
conditions for the existence of an integral invariant of system (4.1). We expand functions 
F, and Gk in multiple Fourier series 

PI, = 2 Z@ (I) e’@’ @, 
W 

G,=~G$)(Z)ei(a’m); a,-Z" 

we call the key set of system (4.1) the set of all points ZE R"' such that. 
1) (w (I), e, = . . . =(a(Z),Q = 0 with integer-valued vectors E, . . _, -$, 
2) rank X <rankY, where 
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aFr’ z- ark + i 2 5.G:’ 

Let us emphasize that linear independence of the vectors 5, . ., 5, is not assumed in 
this definition. 

Theorem 4. If the undisturbed system is not degenerate and the key set is not empty, then 
system (4.1) has no integral invariant with density xf&‘. 

The poof is by Poincar&'s method (/7/, Chapter 5). We start from Eq.(4.5), in which w0 
is an unknown smooth function of the variables I,, . . ..I.. We put 

w1 =x w, (I) tea* U) 

Using Fourier's method, we obtain from (4.51 the series of equations 

Now let the point I belong to the key set. Putting a equal to E, . . . . 5. we obtain a 
series of algebraic equations in the derivatives aw,/8I,,...,aw,/aI,. The condition for 
solvability is that rankX = rankY 

Consider a simple example. Let I, be the equilibrium position of the vector field F= 

(F,(r),. .., Fim)), and let the integer-valued vector a= 0. Then, rankX=O, and rankY=i, if, 
with I = I,, the sum xaFo”‘taIk is the divergence of the averaged system, linearized in the 
neighbourhood of the non-zero point 1,. In this case the key set contains the point 10,so that 
Theorem 4 is applicable. Notice that we can also prove that there is no integral invariant in 
this example by using Theorem 3 and the corollary of Theorem 1. 

Consider the case when Eqs.(4.1) have a first integral in the form of the series H= 
H, (1, cp) + eH, (1, cp) + . . . . In the conditions of Theorem 4, the function H, is independent of 
cp and at points of the key set 

xaH,IaI = 0 (5.1) 

Consequently, if a point of the key set is not critical for the function H,, thenrank X 
drops at least by unity from its maximum possible value. 

For the proof we again use Poincar&'s method. The function Ho is the first integral of 
the undisturbed system, which is independent of cp, since the system is not degenerate. To a 
first approximation in e,theidentity H'=O gives the relation 

I,& II, = Z,h, (I) + ‘@. Using Fourier's method, we arrive at the series of equations 

which is equivalent to (5.1) when I belongs to the key set. 

6. Application to weakly non-holonomic systems. Theorem 4 can be modified for 
the case of degenerate systems. Instead of arguments of a general kind, we shall consider an 
instructive example from non-holonomic mechanics. We consider the non-holonomic system with 
torus space of positions Ta= {(~r,~~,~~,rnod 2n) and non-holonomic coupling 

'ps' = s (arcp,' + a*%? (6.1) 

The coefficients arand a, are single-valued smooth functions in T*, and e is a small 
parameter. With e = 0 we have motion over the two-dimensional torus ~s=const. In this case 
the system is holonomic and the equations of motion have a natural invariant measure. For 
small values of e#O, the system deviates slightly from holonomic. 

The condition for integrability of the coupling Eq.(6.1) to a first approximation in e is 

aa,lacp, - aa$a’pl = 0 (6.2) 

We Fourier-expand a, and a, with respect to the variables 'pr and cpa: 
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e,=~&!k,erP Ii(k,V,+ k&l 

The cwf ficients sk") are periodic functions in 'pa. 
Condition (6.2) is equivalent to the following chain of 

coefficients: 
relations connecting the Fourier 

k& k, - k&! k, = 0 (6.3) 

We now consider the dynamics of the non-holonomic system with coupling (6.1) andLagrangian 

f, = (gi;* + 'pa'% + tpiB)/2. Up to terms of order of&the equations of motion are 

cp; = 11, cp,' = I,, Vs' = e (a,Z, + a,Z& I,' = I,' = 0 (6.4) 

Notice that the undisturbed system is degenerate. 
We examine the case when system (6.4) has an integral invariant with density in the form 

of the series f=fe+eflf... with periodic coefficients in cp. We write Liouville's equation 
up to 0 (e): 

I,~+I,~+s~fts,l,+a~~)=U (6.5) 

Putting a = 0, we obtain the equation for fo. Using Fourier's method, we conclude that 
fo depends on I,, I,, and 'ps (cf. /7/, Chapter 5). 

To a first approximation in e Eq.(6.5) has the form 

Again applying Fourier's method, we put f1 = ~Cf~~t' ei(k*Q). From 
equations for the Fourier coefficients. On the resonance lines 
have 

(6.6) we obtain a series of 
1, = 6k,, I, = --8k, (6 E R) we 

& gk (cp,) fs 6% - 8k,, qs) = 0, g, = k,&’ - k 8) I k (6.7) 

In view of (6.3)‘ this condition certainly holds when coupling (6.1) is integrable. The 
converse is false. For instance, let a, and a, be independent of ‘pa. Condition (6.3) is not 
in general satisfied, though Eq.(6.7) has a solution in the form of the functions f. which 
are independent of cpi; 

Let us find the conditions for the infinite chain of Eqs.(6.7) to be solvable with respect 
to the functions fo. From (6.7) we have 

TWO cases are possible: either the function g& has a zero on the circle F = {gsmod 2n), 
or else it has no zeros. Since cr is independent of vsr condition (6.3) must hold in the first 
case. Putting 6 = 0 in (6.8), we find that, in the second case, the ratios of gk with 
different k are independent of 'pJ. The conditions are sufficient for system (6.7) to be 
solvable. 

For, with values of k corresponding to the first case , Eq.(6.7) is certainly satisfied. 
In the second case, for some vector k we put fo= cigk. We choose the sign of the constant c 
so #at the function fc is positive. Since the ratios of gy are constant, the function fO 
satisfies Eq.(6.7) with other values of k. 

Fox the initial Eq.(6.6) to be solvable, extra conditions must be imposed: the free 
coefficients a,(') and a&*) either vanish, or the ratios a,@)la,(2), aoc”‘/gk (s = 1, 2; gk # 0) are 
independent'of 'pr. 

The results of analysing Eq.(6.6) can be stated geometrically. The set of all systems 

with Lagrangian L = (cpl*“+ tppze f rp,3/2 and with coupling (6.1) has the natural structure of a 
linear space (isomorphic to the space of pairs of smooth functions a, and us in the three- 
dimensional torus). All systems which have an integral invariant (to a first approximation in 
s) form a linear subspace L. Similarly, the systems with integrable coupling (6.1) form a 
linear subspace L’c L. By analysing the solvability of Sqs.(6.7) we see that the dimension- 
ality of the quotient space L/L’ is infinite. Thus systems with integrable coupling form a 
rare exception among the systems which have an integral invariant. 

In conclusion, we consider the Cbaplygin systems for which the functions a, and a4 are 
independent of the variable cp,. They also form a linear subspace, call it L". It can be shown 
that, for such systems, to a first approximation in e all the conditions for the method of a 
reducing factor, ensuring the existence of an integral invariant /4/, to be applicable, are 
satisfied. For Chaplygin systems, &?k = const. Hence 1;” C L. It can be shown that the 
dimensionality of the quotient space L/L” is likewise infinite. 
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ON THE MOTION OF CHAPLYGIN'S SLEDGE* 

N.K. MOSHCHUK 

The plane motion of Chaplygin's sledge is studied. In his original 
studies of this non-holonomic system, Chaplygin /l/ assume that the 
support plane is horizontal, and used a reduction factor to reduce the 
problem to the study of a Hamiltonian system with two degrees of freedom 
and one cyclical coordinate [i.e., a completely Liouville integrable 
system). A smooth reversible replacement of the phase variables is used 
below for the reduction. The motion is studied in detail by the methods 
of Hamiltonian mechanics, and the motion on an inclined plane is studied 
by the averaging method. The problem was earlier studied in /2-4/ for 
certain constraints on the position of the sledge centre of gravity. 
Chaplygin's equations of motion on an inclined plane were integrated 
in /3/ on the assumption that the centre of gravity lies on a line through 
the blade and perpendicular to the blade. 

1. We consider the motion of a rigid body suppowted on a smooth inclined plane by a 
blade and two smooth roots (a "balanced" Chaplygin sledge), in a homogeneous field of gravity 
with acceleration 9. The oriented space of this 
written as the layer between two parallel planes 
/3/, i.e., M, = R’ x S’. 

system is three-dimensional and can be 
Rg, opposite points of which are identified 

Fig.1 


